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AbstracL The wetting transition in a closed system is analytically discussed based on the 
Sullivan model. The welting m i t i o n  is fint order for the finite system, while it becomes 
of second order for the infinite one. In addition, the temperanu? T, of the wetting umition 
bemmes lower as the separation of the hyo walls decreases. 

1. Introduction 

The wetting transition has received much attention recently [I]. A variety of models has 
been studied from different points of view. When the Sullivan model is taken, the problem 
of wetting phenomena is equivalent in the mathematical expression to the dynamics of a 
classical particle in a conservative potential [2]. An obvious advantage of this model and 
its generalization is that the analytical method could be used in the discussion [3]. This 
model was also used to discuss the wetting phenomena in fluid mixtures [4]. 

In the modern version of van der Waals theory for fluids the interaction between the 
molecules is split into two parts [5]. The strong short-range repulsion is expressed by a 
hard-core molecular reference system, while the weak attraction is treated as a perturbation. 
The thermodynamic potential Q can then be written as 

where /.b. T ,  and p ( r )  are the chemical potential, the temperature, and the local density 
of the fluid, respectively. fh(p. T )  is the Helmholz free energy of the hard-core system, 
@(T)  corresponds to the attraction of the wall on the fluid, and x’(lr - 7’1) to the weak 
attractive force between the fluid molecules. Much attention has until now been focused on 
the wetting transition in an open system, where the chemical potential /L. the pressure p ,  
and the temperature T of the fluid are all fixed. However, the wetting transition in closed 
systems has hardly been discussed. It is clear that the famous Moldover-Cahn experiment 
is carried out in a system where the total number N of particles is fixed [6]. Monte Carlo 
simulations are often made for given N and volume. In this paper we consider a theoretical 
model of the wetting transition in a closed system. The results are qualitatively in agreement 
with the molecular dynamics simulation [7]. 

To simplify the problem we consider a system with two parallel walls at x = 0 and 
x = H, respectively 181. The system is assumed to be homogeneous in both y and z 
directions, so we have that the density of fluid per unit of area 

P(X) = P@) 
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For a system with given N, T, and H, which stands for the volume of the system, the 
equilibrium state is determined by minimalization of the Helmholz free energy F with the 
constrained condition 

that is 

= O  (4) 

where f i  stands for the undetermined coefficient. When the Sullivan model [2] is used, we 

6 ( F  - LLN) 
S P  

have that 

and that 

Here @(I md x (Ix - x’l) have the same range c d o n ,  which is 
of 1ength:Substituting equation (2) into equation (4) we obtain that 

LLh(X)  - LL 4- @ ( X I  + dx’X(lx - X ’ l ) P ( X ’ )  0 I” 
)sen to 

(5) 

(6) 

the unit 

(7) 

where ph = afh/ap is the chemical potential of the hard-core system. Since we have chosen 
the Sullivan model by equations (5) and (6), the non-linear integral equation (7) could be 
simplified as an ordinary differential equation 

with 

where ph = -fh + Php is the pressure of the hard-core system, while p is the pressure of 
the fluid. According to equation (8 )  the wetting problem could be equivalent to the classical 
motion of a particle in the conservative potential V, where +h acts the role of ‘coordinate’ 
of the particle, while x the ‘time’. We shall use the dynamical language in what follows. 
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In this paper we adopt the ideal lattice gas model for the hard-core system, because it gives 
for p(ph) the simplest possible representation 

When p = - 4 2  the potential is symmetric about the axis p h  = 0. For high temperature 
(above T, = U/&) the potential v(ph) has only one maximum, and this situation 
corresponds to the low-density homogeneous phase of the fluid. For low temperature 
(below Tc), however, v(pj,) has two maxima and one minimum between them. With such 
a temperature the fluid is at two-phase coexistence. T, is called the critical temperature. 
The maximum of v(pb) at = -& < 0 and g h  = & > 0 are called the gas peak and 
liquid peak, respectively, where @o is the positive root of the equation 

When p # - 4 2 ,  however, the potential v(& is not symmetric about the axis p h  = 0, 
and the heights of its two peaks might be different. Denoting the positions of the gas peak 
and liquid peak as & and 4, respectively, we may calculate the gas density p ,  and liquid 
density ,q through equation (10). The pressure of the gas phase is 151 

(11) P = Ph(pg) - $UP,'. 

We define a parameter h 0 such that 

It could be proven that 

This parameter is important in the analytical discussion. A more physical definition for this 
parameter is that 

Besides, I / h  gives roughly the width of the liquid-gas interface. 

from equation (7). These conditions are 
The boundary conditions for solving the differential equation (8) could also be obtained 

and 
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We may obtain from equation (8) the ‘mechanical energy’ conservation 
2 

! (A) + V(pLh) = c 
2 d x  

where C is the total energy of the particle. From this conservation condition we have that 

where v = Sign(dph/dX). Hence the time that the particle must take to move from the 
initial state i to the final state f, i.e., the distance between the two parallel walls, is 

Denoting by n = N / H  the average density of the fluid, we obtain from equations (3) and 
(15) that 

(17) 

The most interesting range for the values of n in the investigation of the wetting transition 
is pg e n < pi. Otherwise, if n < pg (or n > pi) the space between the two walls will 
obviously be occupied by gas (or liquid) phase, and no phase transition could take place. 
In fact, in order to make the wetting transition in the system possible, we should assume 
the value of n to be distinctly different from both pg and p ~ .  

Now we have completely formulated the problem. For given a, T, E ,  H, and n, we 
may (at least, in principle) obtain the chemical potential /.L and the ‘mechanical energy’ C 
from equations (16) and (17), and then the pressure p and the free energy F. If more than 
one pair of values of p and C were obtained from equations (16) and (17). the equilibrium 
state of the system would be that one with the smallest free energy F .  

2. The Helmholz free energy 

Sullivan proved 121 that the free energy of an infinite open system is connected to an area in 
the dpb/dX-ph space, which i s  that between the dynamical trajectory, the initial condition 
line, and the jLh axis. In a similar way we can prove that the free energy (2) for the 
equilibrium state may be expressed by 

(18) 
1 
ff 

F = -[S - 2r2(1 - e-H) - C H I  + jLnH - p H  

where 

which is the area in the dph/dX-ph space, confined by the two boundary condition lines and 
the trajectory of the particle. Denoting limx,, S by SO, we may prove (see the appendix) 
that 

S = So+ (C - a n m  + o t A p ) H  + SI (20) 
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0 H 

(b) 

Figure 1. The completely wet state. The system is assumed to be infinite (H --t 00). (a) The 
trajectory in the dph/dT--Ph space. (b) The density profile of the fluid between hvo walk. 'this 
profile is symmetric a b u t  H = f. 

where 

SI = k w ( C  - (Ynm + aAp)dH 

(Y 
m = p + -  

2 
and 

AP = P - Pm. 

Equation (18) could, by using equation (20). be rewritten as 
1 F = Fo + -(So + SI) 
(Y 

where 

For given values of a, T, H, n ,  and E ,  the value of Fo is determined, hence the minimum 
of F is specified by the minimum of SO + SI. 

3. The wetting transition in an infinite system 

When H -+ CO, we have that SI -+ 0, and the equilibrium state of the system is determined 
by minimization of So. If there is only one wall in the system, it would be the same as the 
original Sullivan model. The state of the system could be completely wet, or partially wet, 
depending on whether the parameter E is larger or smaller than the value of &/2 + a/4. 
For the system we are considering the situations could be a little more complicated, because 
there are two walls. Since the two walls me exactly the same, Le., the strengths E of the wall 
potential are equal to each other, the two boundary condition lines must intersect at a point 
ph = p + 26 on the ph axis. The state of the system could be completely wet, or partially 
wet, or completely dry, depending on whether the parameter E > € 1 ,  or €2 < E < € 1 ,  or 
E < €2, where 

k f f  
€2 = -- f -. 

2 4  2 4  
E , = - + -  
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When E j r  €1, as shown in figure I ,  the trajectory from the initial state i to the final 
state f must pass through the liquid peak, the gas peak, and the liquid peak again. That 
means that both walls are wet. We call the state completely wet. 

0 

Figurr 2. Thc inmmpletely wet smte for the case H - 00, (a) The UajectoFy in the d l ~ h l h - ~ h  
space. @) The density profile of the fluid. This profile is antisymmetric around H = 4 only 
when the two boundary lines in (a) happen to pass thmugh the origin, i.e., €/U = i. 

When e2 < Q < 6 1 ,  as shown in figure 2, we find that there are four possible trajectories 
from the initial line (i or i') to the final line (f or P) with different free energy: 

(a) i-gas-liquid-f; 
(b) i'-liquid-gas-f; 
(c) i-gas-liquid-gas-P; 
(d) if-liquid-gas-liquid-f. 

It is obvious that state (a) is equivalent to (b) where the Liquid wets one wall but not the 
other. We call this state incompletely wet (or incompletely dry). In state (c)  the liquid wets 
neither of the two walls, which we call completely dry, while (d) corresponds to completely 
wet. The equilibrium state of the system should be that with the minimum free energy F. 
It is easy to find that the states (c) and (d) correspond to a larger So, and so also to a larger 
F. Hence the equilibrium state is (a), or equivalently, (b). The system is the incompletely 
wetting one. 

When 6 < €2 the liquid wets neither of the two walls, i.e., it is the completely dry state, 
as shown in figure 3. 

Summarizing the above discussion we obtain that 

completely wet I completely dry 

when E > €1 

when E Z  c E c €1 

when c < €2. 

the state is incompletely wet 

If one calculates carefully the free energy it will be found for E e E(  that 
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PIXI 
d d d x  

and 

We may see that both SO and dSo/dc are continuous, but d2S0/dc2 is not. Hence at E = cl 
(or for the same reason at E = €2) both the free energy F and a F p s  are continuous while 
a2F/ac2 is discontinuous. That means that the phase transitions are of second order. 

In the experiment it is easier to control the temperature than the strength of the 
wall potential, so it is interesting to see the dependence of the state on the temperature. 
Equation (26) is then rewritten as 

which means that the phase transition takes place at 

€ 1  o < - < - .  
a 2  

The structure of the parameter space is sketched in figure 4. When the wall potential is 
repulsive (</U < 0) the system is always in the completely dry state. When the attractive 
strength of the wall potential is very strong so that c/o[ > 4, however, the state of the 
system is always completely wet. In both the above cases no phase transition takes place. 
In the investigation of the wetting transition the interesting case is the weakly attractive 
wall potential with parameter values in region (29). 

4. The wetting transition in the finite system 

When the separation of the two walls H is finite, we have to solve equations (16) and (17) 
for C and m. This can be done approximately. 

When m N 0 the values of &, &, and h are of the order of m, and are shown to be 
irrelevant to the results. From ap/aw = p we know that 
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Figure 4. The stn~cture of the parameter space. The solid line represents the case of H + m 
and the dashed line a hnik H. These boundaries are symmetn'c between welting and drying 
due to the special choice of equation (10). 

so that equation (21) becomes 

Equation (1 1) gives that V(&) = 0, and then we have 

v(&) = 2 m h  + o(m2). 

In order to calculate the volume integral (16) we expand the mechanical potential V at 
& 

(33) 
1 2  v(!-h) N VO - T(/-Lh - @d2 

where Vo = V(q5g) = 0. Assuming that the particle arrives at ph(a) when x = a and at 
ph(b) when X = b, and that 4 < ph(b) < &&(a) and c V(ph(b)) < Vo, we have 

- 2(C - Vo) Az[pb(b) - $01'. 

Hence the integral 

where 

h = !Jh(a) - $0, (35) 

Equation (34) is also correct for C > VO if we take @db) = &. As we use equation (34) 
in the present work the parameters C and m are always of the order of h2 or higher, so the 
equation could be written as 

1 J Z h h  I N  -In 
h . . f , .  
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Figure 5. The calculation of the completely wet state for a finite H. 

This result can also be used in the vicinity of the liquid peak. 

peaks. Hence we assume that 
As for the integral (17), the conhibution comes mainly from the vicinities of the two 

p g  when ph c 0 .=( PI when > 0. (37) 

When H c 00 the results obtained in the last section are changed. In the completely 
wet case, because of the symmetry of the trajectory, we may write the integrals (16) and 
(17) as (see figure 5) 

2(11 + IZ + 1 3 )  = H 2(h  + I2)m + 2 I w ,  = nH 

where I,,  I,, and I ,  are expressed as 

and 

with 

It is easy to obtain 

where 
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Since n is distinctly different from both pg and f i  we know that both kl and kz are distinctly 
different from zero. Substituting equations (38), (39). and (40) into equation (42) we obtain 
that 

C = 0 m = -1'h&. (44) 

In the calculations here and below we neglect the quantities of orders 8;: 8:. or 8182, where 
ai = exp(-AkiH) for i = 1,2. It could be confirmed that equation (44) IS correct for h 0 
too. According to equation (33) we have that 

Using the above equation and equation (13) we have 

(45) 
2 

l + h  
h = -(€ - €1). 

Substituting equations (44) and (45) into equation (31) we obtain for the completely wet 
state that 

In a similar way we can obtain that 

SI = o  (47) 

for the incompletely wet state and that 

for the completely dry state. These results show that the values o f t  corresponding to the 
phase transitions are moved from €1 and €2 to 

and 

E; = €2 + 2(1 - 1)~oOsz 

respectively. From figure 4 one can see that the transition temperature T, becomes lower 
than that for H + m. 

Besides, we may see from equations (46). (47), and (48) that the phase transition is of 
first order instead of second order, since the derivative dSt/ds is discontinuous at E ;  or ti. 
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5. Conclusions 

The wetting transition in the closed system is more complicated than that in the open one. 
At a certain temperature T below Tc, when the wall potential is very weak both walls are 
completely dry. As the strength of the wall potential increases the system transfers from 
the completely dry state to the incompletely wet one. For further increase of the strength 
the phase transition from the incompletely wet state to the completely wet one takes place. 
When the separation of the two walls is infinite the phase transition is of second order, while 
for the finite system it becomes of first order. In this aspect the results we obtain in the 
present paper are in agreement with those obtained via the molecular dynamics simulations 
of the cut and shifted Lennard-Jones fluid [7]. However, the simulation world is much more 
complex [7] and the Sullivan model should be seen as a special case. 

If one varies the temperature for a given strength of the wall potential, however, the 
phase transition might not occur. For repulsive wall potential (€/U < 0 for the Sullivan 
model), the state of the system would be governed by the walls, i.e., both walls are dry. For 
strongly attractive wall potential (e/w $ for the Sullivan model), the state of the system 
is also govemed by the walls, i.e., the liquid wets both walls. In both cases there must 
be two gas-liquid interfaces between two walls, and no phase transition takes place at all. 
Only for a weakly attractive wall potential (0 < €/CY c f for the Sullivan model) does the 
system undergo the phase transition at a certain temperature T, below Tc. This temperature 
becomes lower when the separation H decreases. 

We should also mention that the discussion in this paper is restricted to the case of large 
separation H of the walls. For very small H the approximation (46) is not correct. Besides, 
the results near the critical point might be changed considerably because fluctuation would 
play an important role. It should also be emphasized that we consider only the short-range 
model with plane geomeny, so the capillary wave fluctuations are not accounted for properly. 
The real world possesses power-law dispersion forces which changes the universality class 
yet again. 
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Appendix 

When the values of p, C, or p vary the area S varies also, and we may from equation (19) 
obtain that [8] 
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By using equations (13), (14), (15), and (16) we find that equation (Al) is simply 

We may obtain similarly that 

Hence we have 

dS = HdC - anHd& + a H d p .  

When H + 00 the particle must stay at the gas peak or the liquid peak for an infinitely 
long time. That means 

& = - -  C=O p = p m  w h e n H - k m  (A3) 

where pm is determined by equation ( 11) for the gas phase, and has a similar expression 
for the liquid. Denoting IimH,, S by SO. using equations (A2) and (A3) we obtain that 

a 
2 

+ a ( ~  - pm)]dH 

which is the same as equation (20). 
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